
SOAFEE Architecture

SOAFEE Members

May 11, 2023

CONTENTS:

1 Introduction 1
1.1 Software Defined Vehicle . 1
1.2 Centralization of Compute . 1
1.3 New Business Models . 1
1.4 Separation of Hardware and Software . 1
1.5 Virtual Development and Validation . 2
1.6 Impacts . 2

2 Architecture Overview 3
2.1 SOAFEE Architecture Overview . 3
2.2 SOAFEE Architecture Guiding Principles . 3

2.2.1 Safety . 3
2.2.2 Security . 4
2.2.3 Real-Time . 4

3 Challenges Ahead 5
3.1 Safety certification of cloud native technologies . 5
3.2 Compatible safety certified system software . 5
3.3 Startup . 5
3.4 Real-time constraints & determinism . 5
3.5 Automotive networks . 6
3.6 Dynamic functions and homologation . 6
3.7 Workload Deployment . 6
3.8 Workload partitioning and clusters . 6
3.9 Cloud based Testing . 6

4 DevOps in the Cloud, Deploy at the Edge 7
4.1 SOAFEE Blueprints . 7
4.2 SOAFEE Integration Lab . 8

5 Architecture 9
5.1 Overview . 9
5.2 SOAFEE Software Architecture . 10
5.3 Future Work . 11

6 How to Get Involved 13

i

ii

CHAPTER

ONE

INTRODUCTION

1.1 Software Defined Vehicle

Mobility undergoes a significant digital transition towards becoming connected, autonomous, shared and electric
(CASE). This transformation bases majorly on Software Technologies and the Software Defined Vehicle is charac-
terized by managing its functionality and its operations to a large extent by Software throughout its entire lifecycle.

1.2 Centralization of Compute

With a software-centric focus, the electronic architectures of vehicles transform towards greater centralization of com-
pute which is happening due to both technical and business reasons. This trend in consolidation of compute in auto-
motive allows for improvements such as the reduction of wiring complexity and weight amongst other factors. These
improvements allow for supply chain and manufacturing optimisations with the promise of easier and less expensive
product development.

1.3 New Business Models

The move towards Software Defined Vehicles enables an OEM to enhance the vehicle’s capabilities over time as new
features are expressed in software that can be delivered over the air. This will allow for enhanced business models
whereby the end users can purchase additional features after the vehicle has left the dealership.

1.4 Separation of Hardware and Software

With vehicle functions getting updated or enhanced throughout the entire lifecycle of a vehicle, it becomes essential
to deploy identical Software Components to different vehicle computer variants and therefore achieve a separation of
Hardware and Software.

1

SOAFEE Architecture

1.5 Virtual Development and Validation

To shorten the time-to-market for new Software Functions and allow for scalability of Software Validation with the
number of vehicle and therefore hardware variants, use of Virtual Development and Virtual Validation becomes essen-
tial. Fast and Frequent Software Deployments With the penetration of vehicles being connected to the digital consumer
ecosystem, the need for fast and frequent Software Deployments is majorly driven by Cyber Security requirements,
which currently get increasingly important. In addition to technical and business aspects, legal standards have evolved
significantly. Additionally the lifecycle of hardware and software will be decoupled and the latest version of a software
might be installed on vehicles, which are already in operation for several years.

1.6 Impacts

There are many benefits to the industry migrating to a Software Defined Vehicle model, but there are differentiating and
non-differentiating challenges with this migration. The first issue is that traditionally the vehicle has been seen as an
embedded platform, where the software has been hardware-dependent to a large extent. This means that the software
for one system may not be easily transferred to another without potential large up-front engineering costs. In a Software
Defined world, anything that adds barriers such dependencies add to overall development costs reduces attractiveness
in a competitive market. The second issue arises with the increased complexity of the centralized compute modules.
These may include heterogeneous compute islands for application, real-time and microcontroller based workloads,
each needing to support different profiles ranging from QM to ASIL-D, from low to high security and from best-effort
to hard

real-time profiles, including combinations thereof. The configuration and deployment of workloads to these SoC’s
has the potential to become very system specific, again reducing the ability for workloads to easily migrate from one
system to another. These two primary complexity angles are potential barriers that will challenge the pace at which
the industry migrates towards the Software Defined Vehicle. Increasing the pace of migration to a Software Defined
Vehicle in automotive will rely on industry agreeing on open standards and methodologies to help manage and mitigate
these challenges. The SOAFEE Special Interest Group (SIG) is addressing these challenges with a standardized sys-
tem architecture specification. This specification will mature and evolve over time as open standards and best known
methodologies evolve.

2 Chapter 1. Introduction

CHAPTER

TWO

ARCHITECTURE OVERVIEW

Automotive software is increasingly complex as more of the final product is expressed in software. This complexity
is found at many levels. Automotive OEMs have stated that the cost of developing board support packages and new
System on Chip (SoC)/platform integration is unnecessary and very much a non-value added expense. SOAFEE intends
to change this by adopting standards in both cloud native and edge computing allowing automotive OEMs to focus on
their core competencies and increase the reusability of software. SOAFEE will adopt and enhance current standards
used in the cloud-native world today to help manage the software and hardware complexities of the automotive software
defined vehicle architecture.

2.1 SOAFEE Architecture Overview

The primary objective of SOAFEE is to define a framework that supports cloud-native development and vehicle edge
platform deployment of vehicle applications and functions. The framework allows to integrate different middleware
and application Software stacks and focuses on the essential elements for building service oriented architectures in
Automotive Use Cases. In addition, the SOAFEE architecture will enable cloud-native development of all workloads
including those with functional safety, security, temporal partitioning, spatial partitioning and real-time requirements.
These are important characteristics of next generation in-vehicle embedded edge platforms.

2.2 SOAFEE Architecture Guiding Principles

It is essential that real-world, deployable automotive use-cases drive the system architecture requirements for SOAFEE.
The SOAFEE System Architecture Working Group (WG) has established a workflow by which automotive use-cases
drive the architecture analysis, refinement, and allocation of requirements to the SOAFEE architecture planning process.
Long-term, it is the goal of the SOAFEE System Arch WG to analyze and decompose all proposed use-cases to ensure
that use-case requirements in the following areas are addressed by the SOAFEE System Architecture:

2.2.1 Safety

It is fully expected that the SOAFEE architecture will support use-cases that execute safety-critical (micro)services
alongside non-safety-critical ones. Therefore, the execution platform needs to be reliable and safe to ensure the func-
tional safety of such electrical/electronic (E/E) systems. The application of the ISO 26262 safety standard in the auto-
motive domain helps to ensure the correct functioning of the safety-critical platform elements and to keep the residual
errors acceptably low. Since the development of the entire platform compliant to a safety standard is not practical,
the strategy is to develop (or qualify) only safety-critical elements according to ISO 26262 and isolate them from the
non-safety-critical elements accordingly to ensure spatial, temporal and communication Freedom From Interference
(FFI).

3

SOAFEE Architecture

2.2.2 Security

Security analysis of all use-case must be a common practice. All implementations shall pass security checks and follow
a set of best practices, including:

1. Threat model: Platform and Applications. A threat model for the platform is to be created. All application
decomposition should be associated with a bare minimal threat model.

2. Design principle: Principle of least privilege to be followed for the infrastructure (container runtime, orchestrator
etc) and the applications.

3. Support of common security services such, but not limited to cryptography, attestation, etc.

4. Robust security APIs to be used by applications. SOAFEE should include a standardized API. Not to define its
own but use available standards.

5. Architecture agnostic deployment. It should be possible for applications to consume security services from the
platform independent of how they are supported (SW, HSM, TEE etc.).

6. Discoverability of security services and their robustness. E.g., an application may be deployed only if the under-
lying HW provides crypto service from HSM.

7. Application authentications: How do we verify a deployed container is trusted? How do we verify a container
when starting is not modified in storage?

8. Coding guidelines and static analysis. Propose that SOAFEE platform is to follow CERT coding guidelines
(where applicable) and run static analysis to avoid vulnerabilities.

9. Security verifications: A basic minimal set of testing covering privilege checks, fuzzing.

2.2.3 Real-Time

SOAFEE is targeting use-cases that will require time constraints on the execution of the workloads. Real-time require-
ments must be considered from the point where workloads are analyzed and decomposed, throughout the design of the
SOAFEE software stack, and finally when considering software / hardware interactions.

4 Chapter 2. Architecture Overview

CHAPTER

THREE

CHALLENGES AHEAD

Cloud native technologies were not designed to run inside a vehicle. Therefore most of the available cloud native
technology is missing several aspects, which are crucial for running inside the car. Multiple challenges are already
identified for automotive cloud native.

3.1 Safety certification of cloud native technologies

A majority of the cloud native technologies, which are intended to bring the functionality inside the vehicle, are not
safety certified. Often the used programming language itself is not suitable to ensure important features such as memory
safety or determinism. Therefore, crucial components such as runtimes or orchestrators may need to be audited or
rewritten.

3.2 Compatible safety certified system software

Mixed critical orchestration is about management of applications with different safety requirements. Especially for
functions with safety requirements the whole software stack underneath the orchestrator needs to be certified. To date,
no automotive safety certified linux with container support is available. On the other hand, several certified OS systems
don’t support containers.

3.3 Startup

When starting a vehicle, multiple applications get started and requirements of availability are typically in the range of
seconds. This implies that you need to have a prioritized order to start containers and the container runtime needs to
start 10-100 containers in this time period. This relates to startup times lower than 10-50 ms per container (this presents
a challenge for currently available runtimes).

3.4 Real-time constraints & determinism

For automotive functions it is often mandatory to keep timing requirements during execution. Processing of signals
chains (e.g., from sensors to applications control units and back to actuators) needs to be guaranteed to ensure important
reaction times in order to avoid accidents. For this cloud native technology needs to be enhanced to support:

• Deterministic scheduling

• Deterministic processing of signals / guarantee for latency

• Priority handling

5

SOAFEE Architecture

3.5 Automotive networks

The automotive network has time sensitive networking (TSN) enabled to achieve deterministic timing for data commu-
nication. Currently TSN is not supported in cloud native technologies. Resource constraints: The high-performance
computers inside the vehicle are constrained environments. Containers are only allowed to consume a defined amount
of resources (CPU, memory, IO, etc.). This should be well handled by available OS mechanisms but needs to be ensured
during the development process.

3.6 Dynamic functions and homologation

A big benefit of an orchestrator is the capability of adding new applications during runtime. On the other hand au-
tomotive regulations require a homologation process of software before deployment. To unleash the full potential of
orchestration in the vehicle a process to add or update applications dynamically needs to be established.

3.7 Workload Deployment

Automotive applications have different implications, restrictions and lifecycle when it comes to both releasing and
deploying a new version of an end user application or a (operating) system level update. Existing DevOps methodologies
can be applied to enhance this workflow with some refinement for the Automotive land.

3.8 Workload partitioning and clusters

To enable mixed safety systems often a hypervisor or microkernel is used to partition the hardware resources into
domains running several Operating Systems in the car. The orchestrator has the ability to manage applications across
separate partitions by adding agent nodes.

3.9 Cloud based Testing

Modern DevOps processes have robust testing infrastructure build into their testing and deployment pipelines. Cur-
rently this infrastructure from the cloud-native world lacks the ability to test and validate real-time workloads, or work-
loads that are targeting real-time or microcontroller based architectures. We need to enhance the cloud based tooling
to meet the validation needs of safety and real-time domains.

Addressing these and other challenges ahead will require industry cooperation and collaboration.

6 Chapter 3. Challenges Ahead

CHAPTER

FOUR

DEVOPS IN THE CLOUD, DEPLOY AT THE EDGE

The DevOps methodology is well established for cloud workflows. There is a huge opportunity for cloud develop-
ment workflows and practices to be re-used in the automotive industry. This is not just about how to do continuous
testing/building in the cloud or automated deployments on edge devices but it also implies how end-user applications
will be developed. Adopting a DevOps model in automotive implies that most embedded software developers will no
longer need to develop, build, and test applications using a host development system alongside a target/edge platform
for testing. While it is possible to inherit most DevOps practices from a cloud-based environment, deploying systems
and applications on edge devices have its unique set of challenges. A few of these challenges are listed below:

• When and how should application updates be deployed?

• How will the system deal with an update of a running application?

• How to identify if an application has enough resources to run, keeping in mind it is not limited to the usual
computing resources but also car features/components.

• How will I test applications in an automated manner in an emulated environment in the cloud.

Essential to support application development in the cloud is the requirement for a base operating system that can run not
only in the cloud for testing but must also run on the edge platform for on-device testing. Sticking to well-known cloud
technologies such as OCI compatible containers are essential in developing/testing applications in the cloud, allowing
the same portable container to also be deployed at the edge for example, in a vehicle. To help facilitate this workflow
and provide repeatable examples, the SOAFEE SIG has introduced SOAFEE Blueprints and the SOAFEE Integration
Lab.

4.1 SOAFEE Blueprints

SOAFEE Blueprints are example reference application software solutions guided by specific automotive software de-
fined use-cases used to validate SOAFEE architectural concepts and accelerate product development and prototyping.
Blueprints are intended to demonstrate concepts such as DevOps in the Cloud and Deploy at the Edge, however it is
not a requirement for a blueprint to cover the complete end-to-end DevOps cycle.. This will allow SOAFEE members
to validate application-level use-cases and showcase edge deployments.

7

SOAFEE Architecture

4.2 SOAFEE Integration Lab

SOAFEE Blueprints will be key to validating the SW defined model defined by SOAFEE. Blueprints will be used
to validate the cloud native development, integration and test workflows in the cloud. Once the cloud native devel-
opment workflow has been developed/matured for the blueprint the next step is to test/validate on the edge compute
platforms. This is where SOAFEE Integration Labs will play an important role. This is a lab that will make available
supported edge platforms for on-device testing of workloads. These labs provide the hardware to test the “Deploy at the
Edge” workflow on embedded edge hardware. The Integration Lab will enable the testing and integration of compliant
hardware platforms, both virtual and physical, with SOAFEE compliant implementations such as the the Edge Work-
load Abstraction & Orchestration Layer (EWAOL), a SOAFEE reference implementation, and stacks from commercial
software vendors, with workloads such as Open AD Kit that conform to the SOAFEE architecture as outlined in this
document. The combination of the SOAFEE Blueprints and the SOAFEE Integration Lab will create a quick start tool
for third parties to build functional solutions quickly and easily on SOAFEE compliant solutions.

8 Chapter 4. DevOps in the Cloud, Deploy at the Edge

CHAPTER

FIVE

ARCHITECTURE

5.1 Overview

Considering the key factors and the motivation for SOAFEE, it becomes obvious that adopting concepts and solutions from cloud native in the vehicle will lead to a huge impact. The essential dimensions are:

• Functionality and interfaces for scaling and orchestrating services should work in the same way in the vehi-
cle and in the cloud and follow cloud native technologies. This however needs to consider the Automotive-
specific needs for safety and limited resource footprints.

• Development / Testing / Deployment workflows, which enable service development and testing in a cloud
based virtual environment (simulation) before deploying to the physical hardware. We can move more
test and validation scenarios to the cloud, if the execution environment in the virtual system is similar or
equivalent to the one in the physical embedded system (environmental parity).

Figure 1 - SOAFEE Architecture Vision

9

SOAFEE Architecture

5.2 SOAFEE Software Architecture

At this stage in the SOAFEE journey to support software defined vehicles the SOAFEE software architecture can be
represented by the elements in the following diagram.

Figure 2 - SOAFEE Architecture v1.0

The required elements for this release of the SOAFEE architecture must include:

• OCI compliant container engine and runtime: OCI Runtime Specification.

• Kubernetes compatible container workload orchestration: Kubernetes API.

• Develop in Cloud, Deploy at the Edge (native cloud development)

• Reference Implementation Maintenance supported by CI: meta-ewaol CI.

• Runs unmodified on Platforms with Standard Based Firmware

The reference implementation of SOAFEE, EWAOL is an expression of this release of the architecture. The release
numbers of EWAOL reflect the release of this document.

10 Chapter 5. Architecture

https://github.com/opencontainers/runtime-spec
https://kubernetes.io/docs/concepts/overview/kubernetes-api/
https://gitlab.com/soafee/ewaol/meta-ewaol/-/pipelines
https://gitlab.com/soafee/ewaol/meta-ewaol

SOAFEE Architecture

5.3 Future Work

The following topics need to be detailed in order to continue the adoption of cloud native technologies into the Auto-
motive Domain:

• Observability and Analysis: The paradigm of environmental parity, which underlines one of the central pillars
of SOAFEE needs to be proven by dedicated observations and analytics. The major efficiency effect of a virtual
development and validation in the cloud can only be leveraged, if we can prove that the results are comparable.

• Mixed Critical Safety Orchestration: The paradigm shift for cloud native in Automotive needs to support the
complete range of mixed criticality. Migration of applications towards Microservices requires significant invest-
ment. This is only acceptable, if the gains justify it. Harmonizing and simplifying the programming models
in safety, non-safety, vehicle and cloud environments therefore is essential. The problem of mixed-criticality
comprises considerations on appropriate tooling to allow flexible deployment of safety services during the entire
lifecycle of the vehicle.

• Cloud Native Trail: The adoption of Cloud Native in Automotive requires collaboration and contribution of
many different stakeholders. It can only be driven by SOAFEE. To indicate a clear and stepwise approach for a
migration, a clear trail needs to be described (similar to the cloud native trail map).

• Partitioning Recipes: There are different options to achieve partitioning of compute (Containers, Hypervisor,
upcoming technologies e.g. via eBPF). A clear comparison and guidelines are needed for a selection of the best
possible solution for a dedicated use-case.

5.3. Future Work 11

https://github.com/cncf/trailmap/blob/master/CNCF_TrailMap_latest.pdf

SOAFEE Architecture

12 Chapter 5. Architecture

CHAPTER

SIX

HOW TO GET INVOLVED

For more information please go to:

• General Information: https://soafee.io

• Source code repository: https://gitlab.com/soafee

• Join SOAFEE: https://soafee.io/community/join/

• Public calendar: Web view, ICAL

13

https://soafee.io
https://gitlab.com/soafee
https://soafee.io/community/join/
https://www.soafee.io/community/calendar
https://calendar.google.com/calendar/ical/c_mi011bbj3kuraljg8k92kk8n84%40group.calendar.google.com/public/basic.ics

	Introduction
	Software Defined Vehicle
	Centralization of Compute
	New Business Models
	Separation of Hardware and Software
	Virtual Development and Validation
	Impacts

	Architecture Overview
	SOAFEE Architecture Overview
	SOAFEE Architecture Guiding Principles
	Safety
	Security
	Real-Time

	Challenges Ahead
	Safety certification of cloud native technologies
	Compatible safety certified system software
	Startup
	Real-time constraints & determinism
	Automotive networks
	Dynamic functions and homologation
	Workload Deployment
	Workload partitioning and clusters
	Cloud based Testing

	DevOps in the Cloud, Deploy at the Edge
	SOAFEE Blueprints
	SOAFEE Integration Lab

	Architecture
	Overview
	SOAFEE Software Architecture
	Future Work

	How to Get Involved

